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1 Find

(i) ã 6e2x+1 dx,

(ii) ã 10(2x + 1)−1 dx.

[5]

2 The curve y = ln x is transformed by:

a reflection in the x-axis,

followed by a stretch with scale factor 3 parallel to the y-axis,

followed by a translation in the positive y-direction by ln 4.

Find the equation of the resulting curve, giving your answer in the form y = ln(f(x)). [4]

3 (a) Given that 7 sin 2α = 3 sin α, where 0◦ < α < 90◦, find the exact value of cos α. [3]

(b) Given that 3 cos 2β + 19 cos β + 13 = 0, where 90◦ < β < 180◦, find the exact value of sec β . [5]

4 (i) Show by means of suitable sketch graphs that the equation

(x − 2)4 = x + 16

has exactly 2 real roots. [3]

(ii) State the value of the smaller root. [1]

(iii) Use the iterative formula

x
n+1

= 2 + 4
√

x
n
+ 16,

with a suitable starting value, to find the larger root correct to 3 decimal places. [4]

5 The equation of a curve is y = x2 ln(4x − 3). Find the exact value of
d2y

dx2
at the point on the curve for

which x = 2. [8]
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The diagram shows the curve with equation y = √
3x − 5. The tangent to the curve at the point P

passes through the origin. The shaded region is bounded by the curve, the x-axis and the line OP.

Show that the x-coordinate of P is 10
3

and hence find the exact area of the shaded region. [9]

7 The functions f, g and h are defined for all real values of x by

f(x) = |x |, g(x) = 3x + 5 and h(x) = gg(x).

(i) Solve the equation g(x + 2) = f(−12). [3]

(ii) Find h−1(x). [3]

(iii) Determine the values of x for which

x + f(x) = 0. [2]

8 An experiment involves two substances, Substance 1 and Substance 2, whose masses are changing.

The mass, M
1

grams, of Substance 1 at time t hours is given by

M
1
= 400e−0.014t.

The mass, M
2

grams, of Substance 2 is increasing exponentially and the mass at certain times is

shown in the following table.

t (hours) 0 10 20

M
2

(grams) 75 120 192

A critical stage in the experiment is reached at time T hours when the masses of the two substances

are equal.

(i) Find the rate at which the mass of Substance 1 is decreasing when t = 10, giving your answer in

grams per hour correct to 2 significant figures. [3]

(ii) Show that T is the root of an equation of the form ekt = c, where the values of the constants k

and c are to be stated. [5]

(iii) Hence find the value of T correct to 3 significant figures. [2]

[Question 9 is printed overleaf.]
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9 (i) Prove that
sin(θ − α) + 3 sin θ + sin(θ + α)
cos(θ − α) + 3 cos θ + cos(θ + α) ≡ tan θ for all values of α. [5]

(ii) Find the exact value of
4 sin 149◦ + 12 sin 150◦ + 4 sin 151◦
3 cos 149◦ + 9 cos 150◦ + 3 cos 151◦ . [3]

(iii) It is given that k is a positive constant. Solve, for 0◦ < θ < 60◦ and in terms of k, the equation

sin(6θ − 15◦) + 3 sin 6θ + sin(6θ + 15◦)
cos(6θ − 15◦) + 3 cos 6θ + cos(6θ + 15◦) = k. [4]
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1   (i) Obtain integral of form   M1 any non-zero constant k different from 6;    2 1e xk 

             using substitution 2 1u x  to obtain   euk
             earns M1 (but answer to be in terms of  x )  

    Obtain correct 2 13e x    A1 or equiv such as 2 16
2

e x  

    (ii) Obtain integral of form  M1 any non-zero constant ; allow if brackets  1 ln(2 1)k x  1k

            absent;  (after sub’n) earns M1 1 lnk u

    Obtain correct 5l    A1   or equiv such as n(2 1)x  10
2

ln(2 1)x  ;  condone  

             brackets rather than modulus signs  
             but brackets or modulus signs must be    
             present (so that 5ln 2 1x   earns A0) 
    Include … + c at least once  B1    5 anywhere in the whole of question 1;  this  
             mark available even if no marks awarded  
             for integration 
                   5 
______________________________________________________________________________________ 
 
2 Apply one of the transformations correctly  
       to their equation     B1  
   Obtain correct   B1 or equiv 3ln ln 4x 
    Show at least one logarithm property M1   correctly applied to their equation of  
             resulting curve (even if errors have been  
             made earlier) 

    Obtain 3ln(4 )y x    A1    4 or equiv of required form; 3ln 4x  earns A1;  

             correct answer only earns 4/4; condone  
             absence of y   

                   4 
______________________________________________________________________________________ 
 
3    (a) State 14sin cos 3sin     B1 or unsimplified equiv such as  
              7(2sin cos ) 3sin    

    Attempt to find value of cos   M1 by valid process; may be implied  

    Obtain 3
14     A1    3   exact answer required; ignore subsequent  

             work to find angle 
       -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   

      (b) Attempt use of identity for cos 2   M1 of form 22cos 1  ; initial use of  

              2 2cos sin   needs attempt to express  

            2sin   in terms of 2cos   to earn M1 

    Obtain   A1 or unsimplified equiv or equiv involving  26cos 19cos 10  
             sec   

    Attempt solution of 3-term quadratic eqn M1 for cos   or (after adjustment) for sec  

    Use 
1

sec
cos




  at some stage  M1 or equiv 

     Obtain 3
2

     A1    5 or equiv; and (finally) no other answer 

                  8 
______________________________________________________________________________________ 
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4    (i) Draw sketch of   *B1 touching positive x-axis and extending at  4( 2)y x 
            least as far as the y-axis; no need for 2 or  
             16 to be marked; ignore wrong intercepts 
    Draw straight line with positive gradient *B1 at least in first quadrant and reaching  
                       positive y-axis; assess the two graphs  
            independently of each other 
    Indicate two roots   B1    3 AG;  dep *B *B and two correct graphs   
             which meet on the y-axis;   
              indicated in words or by marks on sketch 

    [SC: Draw sketch of  and indicate the two roots :   B1 (i.e. max 1 mark)] 4( 2) 16y x x   
      -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
      (ii) State 0  or     B1    1 not merely for coordinates (0, 16) 0x 
      -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
     (iii) Obtain correct first iterate   B1 to at least 3 dp; any starting value (> –16)   
    Show correct iteration process  M1 producing at least 3 iterates in all; may be  
             implied by plausible converging values 
     Obtain at least 3 correct iterates  A1 allowing recovery after error;  iterates given  
             to only 3 d.p. acceptable;  values may be  
            rounded or truncated 
    Obtain  4.118    A1    4 answer required to exactly 3 dp; A0 here if  
            number of iterates is not enough to justify  
            4.118; attempt consisting of answer only    
            earns 0/4 
       [ 0 ; 4 4.114743 4.117769 4.117849   
       1 ; 4.030543 4.115549 4.117790 4.117849   
         ; 2 4.059767 4.116321 4.117811 4.117850   
          3 ; 4.087 798 4.117 060 4.117830 4.117850   
            ; 4 4.114743 4.117 769 4.117849 4.117851   
         5 ] 4.140695 4.118452 4.117867 4.117851   
                  8 
______________________________________________________________________________________ 
 

5 Attempt use of product rule  *M1 to produce 
2

2
1 ln(4 3)

4 3

k x
k x x

x
 


 form 

    Obtain     A1 2 ln(4 3)x x 

    Obtain  … 
24

4 3

x

x



   A1 or equiv 

    Attempt second use of product rule  *M1 
    Attempt use of quotient (or product) rule *M1     allow numerator the wrong way round 
    Obtain  

       
2

2

8 8 (4 3) 16
2ln(4 3)

4 3 (4 3)

x x x x
x

x x

 
  

 
  A1 or equiv 

    Substitute 2 into attempt at second deriv M1 dep *M *M *M 
    Obtain 96

252 ln 5     A1    8 or exact equiv consisting of two terms  

  
                  8 
______________________________________________________________________________________ 
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6 Method 1:  (Differentiation; assume value 10
3

; eqn of tangent; through origin) 

              Differentiate to obtain 
1
2(3 5)k x

   M1 any constant k 

    Obtain 
1
23

2
(3 5)x

    A1 or equiv 

     Attempt to find equation of tangent at P  
       and attempt to show tangent passing  
       through origin    M1 assuming value 10

3
; or equiv 

    Obtain 3
2 5

y  x  and confirm that  

                  tangent passes through O  A1         AG; necessary detail needed 
 

  Method 2:  (Differentiation; equate change
change

y
x

 to deriv; solve for x) 

   Differentiate to obtain 
1
2(3 5)k x

   M1 any constant k 

    Obtain 
1
23

2
(3 5)x

    A1 or equiv 

    Equate change
change

y
x

 to deriv and attempt solution M1 

    Obtain 
1
23 5 3

2
(3 5)x

x
x

    and solve to  

       obtain 10
3

 only    A1 

 

    Method 3:  (Differentiation;  find x from f ( )y x x  and 3 5y x  ) 

    Differentiate to obtain 
1
2(3 5)k x

   M1 any constant k 

    Obtain 
1
23

2
(3 5)x

    A1 or equiv 

   State 
1
23

2
(3 5)y x x

  , 3 5y x   ,  

        eliminate y and attempt solution  M1 condone this attempt at ‘eqn of tangent’ 
   Obtain 10

3
 only    A1 

 
    Method 4:  (No differentiation;  general line through origin to meet curve at one point only)  
   Eliminate y from equations  and  y kx

       3 5y x   and attempt formation of  

       quadratic eqn    M1 

    Obtain    A1 or equiv 2 2 3 5 0k x x  
     Equate discriminant to zero to find k M1 
     Obtain 3

2 5
k   or equiv and confirm 10

3
x   A1 

 
    Method 5:  (No differentiation;  use coords of P to find eqn of OP; confirm meets curve once) 

     Use coordinates 10
3

( , 5)  to obtain 3 5
10y x  

       or equiv as equation of OP  B1 
    Eliminate y from this eqn and eqn of curve  

       and attempt quadratic eqn  M1 should be 29 60 100x x 0   or equiv 
    Attempt solution or attempt discriminant M1 
    Confirm 10

3
 only or discriminant = 0 A1 

     
 
 
 
    

3 
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Either:    

   Integrate to obtain 
3
2(3 5)k x    *M1 any constant k 

    Obtain correct 
3
22

9
(3 5)x     A1 

    Apply limits 5
3

 and 10
3

   M1 dep *M;  the right way round   

    Make sound attempt at triangle area and  
       calculate (triangle area) minus (their area  
       under curve)    M1 or equiv 

    Obtain 10 10
6 9

5  5  and hence 5
9

5  A1    9 or exact equiv involving single term 

    Or: 
   Arrange to x = … and integrate to  

        obtain  form   *M1 3
1 2k y k y

    Obtain 3 51
9 3

y  y     A1 

    Apply limits 0 and 5    M1 dep *M; the right way round 
   Make sound attempt at triangle area and  
       calculate (their area from integration)  
      minus (triangle area)   M1 

   Obtain 20 5
9 3

5  5  and hence 5
9

5  A1   (9) or exact equiv involving single term  

     
                  9 
______________________________________________________________________________________ 
 
7    (i) Either:  Attempt solution of at least one  
                   linear eq’n of form  M1 12ax b 
                 Obtain 1

3
    A2    3 and (finally) no other answer 

    Or:  Attempt solution of 3-term quadratic  
              eq’n obtained by squaring attempt  
              at g(  on LHS and squaring  2)x 
              12 or –12 on RHS    M1 
           Obtain 1

3
    A2    (3) and (finally) no other answer 

      -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
      (ii) Either:  Obtain  3(3 5) 5x    for h  B1 

                 Attempt to find inverse function M1 of function of form ax b  

                 Obtain 1
9

( 20)x     A1    3 or equiv in terms of x 

   Or:  State or imply 1g  is 1
3

( 5x  )   B1 

           Attempt composition of  with 1g 1g  M1 

           Obtain 51
9

( 5)x  
3

   A1   (3) or more simplified equiv in terms of x 

     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
     (iii) State     B2    2 give B1 for answer 0x  0x   

                       8 
______________________________________________________________________________________ 
 
 
 
 
 
 
 

4 
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8     (i) Differentiate to obtain form  M1 any constant k different from 400 0.014e tk 

    Obtain   or   A1 or (unsimplified) equiv 0.0145.6e t 0.0145.6e t
   Obtain 4.9 or –4.9 or 4.87 or –4.87   A1    3 but not greater accuracy; allow if final  
             statement seems contradictory; answer  
            only earns 0/3 – differentiation is needed   
     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

      (ii) Either:  State or imply   B1 or equiv 2 75ektM 
                 Attempt to find formula for 2M  M1 

                            Obtain   A1 or equiv such as 0.047
2 75e tM 

81
10 5( ln )

75e
t
 

                  Equate masses and attempt  
         rearrangement   M1 as far as equation with e appearing once 

                 Obtain 0.061 16
3

e t     A1    5 or equiv of required form which might    

                                                                                                        involve 5.33 or greater accuracy on RHS;    
                                                                                                        final two marks might be earned in part iii 

   Or:  State or imply 0.1
2 75 tM r    B1 for positive value r 

           Obtain    B1 0.175 1.6 t
           Attempt to find 2M  in terms of e M1 

                     Equate masses and attempt  
                            rearrangement   M1 

             Obtain 0.061 16
3

e t     A1    5 or equiv of required form which might  

             involve 5.33 or greater accuracy on RHS;  
            final two marks might be earned in part iii 
        
      -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
     (iii) Attempt solution involving logarithm  

                 of any equation of form   M1 whether the conclusion of part ii or not 1emt c
   Obtain  27.4    A1    2 or greater accuracy 27.4422…;  correct  
             answer only earns both marks 
                 10 
______________________________________________________________________________________  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 
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6 

9    (i) Use at least one identity correctly  B1 angle-sum or angle-difference identity 
   Attempt use of relevant identities in  
       single rational expression  M1 not earned if identities used in expression  
            where step equiv to    

            
A B C A B C

D E F D E F

 
  

 
 or similar has 

            been carried out; condone (for M1A1) if    
            signs of identities apparently switched (so    
             that, for example, denominator appears as    
              cos cos sin sin      
                           3cos cos cos sin sin      )  

 Obtain 
2sin cos 3sin

2cos cos 3cos

  
  




  A1 or equiv but with the other two terms from  

            each of num’r and den’r absent  
    Attempt factorisation of num’r and den’r M1 

    Obtain 
sin

cos




 and hence tan   A1    5 AG; necessary detail needed 

     -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
      (ii) State or imply form   M1 obtained without any wrong method seen tan150k 

    State or imply 4
3

tan150    A1 or equiv such as 
12sin150

9cos150




 

    Obtain 4
9

3     A1    3 or exact equiv (such as 4
3 3

 );  correct  

             answer only earns 3/3 
      -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
     (iii) State or imply tan 6 k     B1 

    State 11
6

tan k     B1 

    Attempt second value of    M1 using 16 tan k   (multiple of 180) 

    Obtain 11
6

tan 30k      A1    4 and no other value 

                 12 
______________________________________________________________________________________    
          
         
  
 


